
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1408

Automated uncertainty quantification analysis using a system model and data

Saideep Nannapaneni, Sankaran Mahadevan

Department of Civil & Environmental Engineering

Vanderbilt University

Nashville, TN 37235, USA

saideep.nannapaneni@vanderbilt.edu

sankaran.mahadevan@vanderbilt.edu

Anantha Narayanan

Department of Mechanical Engineering

University of Maryland

College Park, MD 20742, USA

anantha@umd.edu

David Lechevalier

Le2i,

Université de Bourgogne,

BP 47870, 21078 Dijon, France

david.lechevalier@etu.u-bourgogne.fr

Sudarsan Rachuri

Systems Integration Division, Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

sudarsan.rachuri@nist.gov

Abstract–– Understanding the sources of, and quantifying the

magnitude of, uncertainty can improve decision-making and,

thereby, make manufacturing systems more efficient. Achieving

this goal requires knowledge in two separate domains: data

science and manufacturing. In this paper, we focus on

quantifying uncertainty, usually called uncertainty

quantification (UQ). More specifically, we propose a

methodology to perform UQ automatically using Bayesian

networks (BN) constructed from three types of sources: a

descriptive system model, physics-based mathematical models,

and data. The system model is a high-level model describing the

system and its parameters; we develop this model using the

Generic Modeling Environment (GME) platform. Physics-

based models, which are usually in the form of equations, are

assumed to be in a text format. The data is also assumed to be

available in a text format.

 The proposed methodology involves creating a meta-model

for the Bayesian network using GME and a syntax

representation for the conditional probability tables/

distributions. The actual Bayesian network is an instance model

of the Bayesian network meta-model. We describe algorithms

for automated BN construction and UQ analysis, which are

implemented programmatically using the GME platform. We

finally demonstrate the proposed techniques for quantifying the

uncertainty in two example systems.

Keywords-Bayesian network; meta-model; generic modeling

environment; uncertainty quantification; automation;

I. INTRODUCTION

 Uncertainty quantification (UQ) involves the estimation of

the uncertainty in the output quantity of interest of a system

or a model. UQ also requires aggregation of errors and

uncertainty from several sources of aleatory and epistemic

uncertainty [1]. Bayesian networks (BNs) [2] have become a

popular approach to perform uncertainty quantification. They

are being used in several fields such as information retrieval,

data fusion and engineering decision-making [3], safety

assessment of software-based systems [4], civil infrastructure

networks [7] and manufacturing systems [8]. The popularity

of BNs is increasing for two reasons. First, they allow the

integration of various types of uncertainty that combine in

different ways [9, 10]. Second, they offer a systematic

approach for uncertainty aggregation and management by

fusing heterogeneous information available in multiple

formats (numerical as well as text) from multiple sources.

BNs rely on an accurate, custom-built model of the

domain. The Generic Modeling Environment (GME) [11] is

a tool for creating high-level descriptive models of objects in

various application domains. A domain is specified in GME

by constructing a unique meta-model, which describes the

various objects, properties, and relationships in that domain.

The tool can be then used to build models of real-world

objects in that domain.

Lechevalier et al., [12] propose the idea of using domain-

specific modeling languages and tools to bridge the gap

between the modeling and analytics procedures in the

manufacturing domain. The key idea is to obtain analytical

models from the domain-specific manufacturing system

models, also called instance models.

This paper proposes a method to automatically generate a

BN from instance models, physics-based models and

available data on the system. Our method to automate the

construction of a BN and UQ analysis is based on a Bayesian

network meta-model, which is explained in Section 3.

 The remainder of this paper is organized as follows.

Section II provides an introduction to BNs, techniques for BN

construction, BN learning algorithms and meta-modeling.

Section III describes the proposed methodology and

algorithms for BN construction and UQ analysis. Two

examples – a mathematical example and an injection molding

example are used to demonstrate the proposed methodologies

in Section IV. Conclusions are provided in Section V.

II. BACKGROUND

A. Bayesian networks

 A Bayesian network is a probabilistic, acyclic, graphical

model, consisting of nodes and directed arcs. The nodes

represent the variables in the system. The arcs represent

1409

dependency relationships between variables, which are

quantified by conditional probability distributions. Nodes

that have a directed edge pointing towards a node n are called

the ‘parent nodes’ of node n. Mathematically, a Bayesian

network is the joint probability distribution of a set of

variables 𝑿 = (𝑋1, 𝑋2 … 𝑋𝑛) represented as

𝑃𝑟𝐵(𝑿) = ∏ 𝑃𝑟𝐵(𝑋𝑖|Π𝑋𝑖

)

𝑛

𝑖=1

 (1)

where Π𝑋𝑖
 represents the set of parent nodes of 𝑋𝑖 and

𝑃𝑟𝐵(𝑋𝑖|Π𝑋𝑖
) represents the conditional probability

distribution of 𝑋𝑖, given its parent nodes. If 𝑋𝑖 has no parent

nodes, then 𝑃𝑟𝐵(𝑋𝑖|Π𝑋𝑖
) represents the marginal probability

distribution of 𝑋𝑖.

B. Techniques for Bayesian network construction

 The techniques for constructing a Bayesian Network can

be broadly divided into three types: physics-based, data-

driven, and hybrid approaches. The physics-based approach

relies on the availability of a set of mathematical equations

that represent all the relevant relationships between the

system variables. The data-driven approach assumes that no

such equations exist and that ample data about the system is

available. This data is provided as an input to BN learning

algorithms that can “learn” the structure of the network.

In some cases, mathematical equations are available only

for some segments of the system and data is available for the

other segments. In such a scenario, a hybrid approach is

taken, where physics-based equations might be used to model

some dependencies in the BN whereas the remaining

dependencies are learned from the available data. The overall

Bayesian network is constructed in two stages – (1) a partial

Bayesian network is obtained using the available physics-

based models, and (2) the Bayesian network constructed in

step 1 is used as a prior, denoted as Pr (𝐺) in Equation (4), for

learning the remaining dependencies using the Bayesian

network learning algorithms.

C. Bayesian network learning algorithms

 The goal in using learning algorithms is to identify the

Bayesian network structure that best describes the available

data. The task of learning consists of two steps: structure

learning and parameter learning. Structure learning involves

finding a graphical structure that best represents the

dependency between nodes based on available data.

Parameter learning involves quantifying the dependencies

among several nodes by estimating the parameters of the

associated conditional probability distributions [13].

 The structure learning algorithms can be broadly divided

into three categories: constraint-based, score-based, and

hybrid. Constraint-based algorithms use conditional

independence tests to learn the structure of the BN. Mutual

information test is a commonly used conditional

independence test. The expressions for mutual information

(𝐼𝑋,𝑌) in the case of discrete variables and continuous

variables are given in Equations (2) and (3), respectively, as

𝐼𝑋,𝑌 = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑋𝑌

 (2)

𝐼𝑋,𝑌 = ∫ ∫ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑋𝑌

 (3)

where 𝑝(𝑥, 𝑦) represent the joint probability distribution of 𝑋

and 𝑌, 𝑝(𝑥) and 𝑝(𝑦) represent the marginal distributions of

𝑋 and 𝑌, respectively.

In score-based learning, every possible BN structure is

assigned a network score based on 1) the goodness-of-fit for

available data and 2) a set of heuristic optimization

techniques that obtain the structure that maximizes the score.

A commonly used scoring metric is Bayesian Dirichlet

equivalence (BDe). The BDe based scoring criterion

maximizes the posterior probability of a network-structure

given data and is given as

Pr(𝐺|𝐷) ∝ Pr(𝐷|𝐺) Pr(𝐺)

= Pr(𝐺) ∫ Pr(𝐷|𝐺, Θ) Pr(𝛩|𝐺) 𝑑Θ
(4)

where 𝐺, 𝐷 represent the structure of the Bayesian network

and available data, respectively.

 Hybrid algorithms employ both conditional independence

tests and network scores for learning the BN structure. The

conditional independence tests are used to reduce the space

of possible BN structures whereas score-based methods are

used to obtain the optimal structure among them.

 Parameter-learning algorithms estimate the parameters of

the various conditional probability distributions from

available data using the maximum-likelihood approach.

D. Meta-modeling

 Modeling tools have become essential to the design and

analysis of complex systems. Using such tools involves a

process and a paradigm. The modeling process conforms to a

set of rules that minimizes errors and facilitates the

presentation and communication of models. The modeling

paradigm or the modeling language, such as GME, contains

all syntactic, semantic and presentation information

regarding a domain, and represents the rules that govern the

construction of models.

 In recent years, the notion of meta-modeling has been

added to process and paradigm. The outcome of the meta-

modeling task is a meta-model that encodes all the concepts

and rules of the modeling paradigm. GME, the modeling

language we used, offers a meta-modeling language called

MetaGME, which is based on Unified Modeling Language

(UML) Class Diagrams [14], to create domain-specific meta-

models. The meta-models described in this paper were built

using MetaGME.

1410

 In related work, Nannapaneni et al., [15] present a

technique for using domain-specific models for analytics.

This technique uses the system model to extract the reliability

block diagram using the concepts of functional

decomposition and function-component association for

reliability analysis. Aguila and Sagrado [16] developed a

Bayesian network meta-model that they referred to as BayNet

and which has different modules for representation of

Bayesian network structure (BayNet structure) and inference

(BayNet Reasoning). BayNet allows for modeling of discrete

variables only, whereas this paper seeks to develop a

generalized methodology to handle discrete, continuous and

functional nodes.

III. METHODOLOGY

Our method for using Bayesian networks for uncertainty

quantification can be divided into two steps 1) Automated BN

construction using available models and data, and 2) UQ

analysis using the constructed BN.

A. Automated BN construction using available models and

data

 As stated in Section II, a BN can be constructed using

mathematical models or data or a combination of both. We

consider two construction cases in this paper: one using

physics-based models and one using data. It is

straightforward to construct a BN manually when models are

available. This paper, however, focuses on the automated

generation of a BN.

 The variables required for construction of a BN can be

obtained from the manufacturing system description. We

incorporate this description into a domain-specific model in

GME, which, as noted, is as an instance of the corresponding

meta-model developed using MetaGME. The details of

constructing a generic meta-model for manufacturing

systems are not discussed here, but an illustrative example is

provided in Section IV. The system variables in the

descriptive system model are used as a basis for identifying

the nodes and their preliminary ordering for the BN that will

be generated. Data associated with the system variables is

then used to obtain the BN representing the system.

1) Automated BN construction using physics-based models

 Physics-based models are assumed to be available as

equations in a text (.txt) file. The models could be present in

any random order. The algorithm presented below will order

the equations and build a BN from them. An illustrative

example is provided in Section IV.

1) Create two lists, 𝑥𝐿 and 𝑥𝑅 to store the variables to

the left and right of the equality sign.

2) Create a dictionary object 𝐷 with the left hand side

(LHS) variables of an equation as the key and the

list containing all the right hand side (RHS)

variables of that equation as the value.

3) Since a Bayesian network is a layered structure, the

variables in the top layer, also called root variables,

are given by 𝑥𝑅 – (𝑥𝑅 ∩ 𝑥𝐿).

4) The second layer comprises all variables that can be

defined by a subset of the top-level variables. This

can be achieved by selecting the keys whose values

are a subset of the first layer variables.

5) Similarly, every other layer consists of variables that

can be defined by the variables in the above layers.

The procedure specified in step 4, i.e., looking into

the dictionary 𝐷, is used to select all the variables in

the current layer.

6) Step 5 is repeated several times until all the variables

in the system are defined.

2) Automated BN construction using available data

 When physics-based models are not available, we propose

to use the system model and the data associated with the

process variables in the system model to construct the BN.

Apart from data, the system model may provide qualitative

information about the dependencies between several

variables, which can be used to improve BN construction

from data. The Bayesian network learning algorithm we used

is the scored-based method described in Wilczyński and

Dojer [17]. The BDe criterion (Section II.C) is used as a

scoring metric. A key features of this algorithm is that it can

handle both discrete and continuous variables, which are

often present in manufacturing scenarios. The continuous

variables are handled by discretizing them into two-

component, Gaussian-mixture models. A linear, Gaussian

conditional probability distribution (CPD) with a constant

mean and unknown variance is fit for each continuous node.

Note that the mean of the CPD is a linear combination of

parent nodes.

 The constructed Bayesian network can be validated using

model validation techniques [18] such as model-reliability

metric, area-metric etc. The available dataset can be divided

into a training and a test data; the BN can be constructed with

the training test and validated with the test set.

B. Uncertainty quantification using the Bayesian network

 The BN-based UQ methodology described in [8] is used

in this paper. The important steps are mentioned below for

the sake of completeness. UQ analysis using a BN can be

divided into three tasks: 1) Construction of a BN (Section

II.B), 2) Model calibration, where the unknown parameters

are estimated using any observation data, and 3) Forward

uncertainty propagation, where the posterior distribution of

the output quantity of interest is constructed using posterior

distributions of estimated model parameters.

 The procedure for performing automated UQ analysis

using a BN can be divided into three steps. The first is to

transform the BN (constructed using III.A) into an instance

model in GME. The second is to implement the above UQ

methodology for the BN meta-model on the GME platform.

1411

The third is to apply the UQ methodology to the BN instance

model.

 Using the instance model of the BN, the UQ analysis

methodology, and any new data, uncertainty quantification

can be carried out for the BN constructed in Section III.A.1,

in an automated manner. Figure 1 shows the proposed

methodology for automated UQ analysis.

Figure 1. Methodology for automated UQ analysis

1) Bayesian network meta-model

 Figure 2 shows the BN meta-model created using GME.

Description of the meta-model:

 In the BN meta-model (Figure 2), ‘BayesianNetwork’

represents the root component, and ‘Node’ represents any

node in the Bayesian network. There can be three types of

nodes in the Bayesian network: ‘DiscreteNode’,

‘ContinuousNode’, and ‘FunctionalNode’. A discrete node

represents a variable that has a finite number of states.

Similarly, a continuous node represents a variable that is

continuous. A functional node represents a variable, which

can be known deterministically when the values of its parent

nodes are known. Functional nodes are used to represent any

functional relationships that may be available between nodes

in a Bayesian network.

A ‘Node’ is specified by an inheritance relationship

denoted by the triangle icon between the Node and its

subtypes. In a BN, one node is connected to another forming

an edge; this is represented in the meta-model using the ‘src’

(source) and ‘dst’ (destination) tags at the ‘Node’ component

and by the ‘Edge’ component, which is a connection type of

component.

Figure 2. Meta-model for the Bayesian network

 The next step in defining the meta-model is to provide a

set of required attributes for each of the classes. The most

important attributes in a BN are the node names and the

CPDs/CPTs. Additional attributes that are required for our

UQ analysis are described below. The ‘BayesianNetwork’

component is associated with two attributes – ‘Filelocation’

and ‘Information’. The ‘Information’ attribute is an

‘enumeration’ type and can take only two values – ‘Models’

and ‘Data’. The ‘Filelocation’ attribute refers to the location

of the file that contains either models or data. The attributes

that are common to all three types of nodes such as ‘Name’,

‘Parents’, and ‘Postprocessing’ are associated with the

‘Node’ component. All the parent nodes associated with a

node are provided in ‘Parents’ attribute. ‘Postprocessing’ is a

Boolean variable, that specifies whether or not the variable

requires post processing analysis (posterior distribution

analysis). Apart from the common attributes, each type of

node has a different set of attributes.

 Additional attributes for a discrete node include

‘RootNode’, ‘CPT’, ‘AllStates’ and ‘Observations’. A node

with no incoming edges (i.e., with no parent nodes) is called

a ‘root node’. The Boolean attribute ‘RootNode’ is provided

to identify root nodes. Only Continuous and Discrete nodes

in a BN can be root nodes. All the possible finite states of the

discrete variables are provided in the ‘AllStates’ attribute.

Any new observational data is provided with the

‘Observations’ attribute. The conditional probability table for

the discrete variable or marginal probability table (for root

nodes) is defined in the ‘CPT’ attribute. For illustration,

Table I defines a discrete parent node ‘A’ with three possible

states ‘A1’,’A2’,’A3’ and marginal probabilities of 0.1,0.6,0.3

respectively. Other attributes such as ‘Observations’ and

‘Postprocessing’ are not mentioned below because the goal

here is to demonstrate the definition of a CPT.

TABLE I. REPRESENTATION OF A ROOT DISCRETE NODE

Attribute Value

1412

Name A

RootNode True

Parents

AllStates A1, A2, A3

CPT 0.1,0.6,0.3

 Note that, when defining the marginal probabilities, the order

of probabilities should be the same as the order of states,

which is defined in ‘AllStates’ attribute. Since A is a root

node, it has no associated parent nodes; therefore, the value

corresponding to Parents in Table I is empty. Next, consider

a discrete node with discrete parents. Let A and B be the two

parent nodes each with two states, A = {A1, A2} and B = {B1,

B2}. Let C represent the child node with two states, C = {C1,

C2}. The conditional probability table is given in Table II.

TABLE II. CPT OF A DISCRETE NODE WITH DISCRETE PARENTS

C | A, B A = A1,

B = B1

A = A1,

B = B2

A = A2,

B = B1

A = A2,

B = B2

C = C1 0.6 0.7 0.2 0.4

C = C2 0.4 0.3 0.8 0.6

 The case when the discrete child node has continuous parent

nodes or a combination of continuous and discrete parent

nodes is discussed below. The key ideas in dealing with

continuous parent nodes involve discretizing their ranges and

defining a conditional probability for the child node in each

of the ranges. Let A, B represent a discrete and a continuous

parent node of a discrete child node C. Assume A has two

states, A = {A1, A2} and B follows a uniform distribution

between 10 and 20. Let the range of B be divided into two

uniform intervals; therefore, B can be considered as a discrete

variable. The corresponding conditional probability table is

given as shown in Table III

TABLE III. CPT OF A DISCRETE NODE WITH DISCRETE AND CONTINUOUS

PARENTS

C | A, B A = A1, B =

[10,15]

A = A1, B =

(15,20]

A = A2, B =

[10,15]

A = A2, B

= (15,20]

C = C1 0.6 0.7 0.2 0.4

C = C2 0.4 0.3 0.8 0.6

In Table III, the squared brackets also include the equality

whereas the parentheses do not. If B = [10, 15], then 10 <= B

<= 15 whereas B = (15, 20] represents 15 < B <= 20. The

representation of C is shown in Table IV.

TABLE IV. REPRESENTATION OF A CHILD DISCRETE NODE

Attribute Both parents are

discrete

One discrete and one

continuous

Name C C

Root Node False False

Parents A,B A,B

AllStates C1,C2 C1, C2

CPT A1,B1 : 0.6,0.4; A1,B2 :
0.7,0.3;A2,B1 : 0.2,0.8;

A2,B2 : 0.4,0.6

A1, [10,15] : 0.6,0.4; A1,
(15,20] : 0.7,0.3; A2,

[10,15] : 0.2,0.8; A2, (15,20]

: 0.4,0.6

 Consider the case when B is represented using a Normal

distribution and divided into two disjoint intervals B <= 15

and B > 15 – represented as (..15] and (15..) respectively. The

same representation can be extended to the case when all the

parent nodes are continuous. Each continuous node is

discretized and treated as a discrete variable; a similar

procedure can be followed as for the case of a discrete node

with all continuous parents.

 The attributes for the continuous node include ‘RootNode’,

‘CPD’ and ‘Observations’. The definitions for ‘RootNode’

and ‘Observations’ are identical to their discrete counterparts.

’CPD’ represents the conditional probability distribution or

marginal probability distribution (for root nodes). For

illustration, consider a normally distributed variable ‘A’ with

parameters (mean, standard deviation) 10 and 1. Attributes

such as ‘Postprocessing’ and ‘Observations’ are not

mentioned below. Representation of ‘A’ is given in Table V.

TABLE V. REPRESENTATION OF A ROOT CONTINUOUS NODE

Attribute Value

Name A

RootNode True

Parents

CPD Normal(10,1)

Next, different combinations of parent nodes, A and B, for a

continuous child node C are considered and the

corresponding representations are given in Table VI.

TABLE VI. REPRESENTATION OF A CHILD CONTINUOUS NODE

Attribute Both parents are

discrete

One discrete

and one

continuous

Both

parents are

continuous

Name C C C

RootNode False False False

Parents A(A1,A2), B(B1,B2) A (A1,A2),
B(continuous)

A,B (Both
continuous)

CPD A1,B1 : Normal(5,1);

A1,B2 :
Uniform(10,14); A2,B1

: Normal(10,2); A2,B2 :

Uniform(12,17)

A1:Normal(2*

B,1);A2:
Uniform(B-2,

B+2)

Normal(A+

2*B, 1)

 After discrete and continuous nodes, functional nodes are

considered. As stated earlier, functional nodes are

deterministically known when conditioned on all the parent

nodes, either discrete or continuous. Functional nodes have

only one additional attribute called ‘Equation’. The

expression connecting the parent nodes to the child node is

given here. If A and B represent the continuous parent nodes,

for a functional node C, and if C = A + 2*B, then the variable

is represented as shown in Table VII.

TABLE VII. REPRESENTATION OF A FUNCTIONAL NODE WITH CONTINUOUS

PARENTS

Attribute Value

Name C

1413

Parents A,B

Equation A + 2*B

When a child node has a functional node as a parent node, the

functional node can be treated in the same manner as a

continuous node for CPD/CPT representation. If a functional

node has finite states, it can be modeled as a discrete node

where one particular state has a conditional probability of 1

and all the other states have zero as their conditional

probabilities. A functional node may also be modeled as a

continuous node with zero variance. However, some

Bayesian network packages do not allow modeling a variable

with zero variance. In such cases, a functional node can be

defined as continuous node with a very small variance. To

avoid confusion, we have chosen to model functional nodes

explicitly.

2) Algorithms for automated UQ analysis

 Two algorithms are implemented for the BN meta-model:

1) to construct the instance model of the BN, and 2) to

perform UQ analysis.

 The first algorithm constructs the BN using available

physics-based models or data. In case physics-based models

are available, the algorithm presented in Section III.A.1 is

used to construct the BN. If data is available, the BN is learnt

using BNFinder package in Python, as stated in Section

III.A.2. The BN is constructed in Python and stored as a

JSON representation. The JSON file is then automatically

converted into a GME instance model. The user can make

any changes to the BN instance model (such as adding

observations or selecting variables for post processing,

deleting some nodes), directly using the GME interface.

When all the required changes are made to the BN instance

model, the second algorithm is executed for automated BN

analysis.

 The UQ analysis is carried out using PyMC [19] package

in Python. We have implemented a program that reads the

BN instance model and creates a JSON file to represent the

data corresponding to all the nodes in the BN. A Python script

then takes the JSON file as input and creates a BN model to

carry out UQ analysis. Markov Chain Monte Carlo (MCMC)

sampling, using Metropolis-Hastings algorithm [20], is

carried out to construct the posterior probability distributions

of several variables in the BN.

IV. ILLUSTRATIVE EXAMPLES

1) UQ analysis using data

 A mathematical example is used to demonstrate the

proposed methodologies for automated UQ analysis using

data. In this example, all possible combinations of discrete

and continuous nodes are available. Figure 3 shows a simple

meta-model for manufacturing processes, created using

GME. An instance of this meta-model (shown in Figure 4) is

used in this example. The model consists of three individual

processes namely ‘Process1’, ’Process2’ and ‘Process3’.

Figure 3. Mathematical example: Meta-model

Figure 4. Mathematical example: Instance-model

 Using the conditional probability distributions in Table

VIII, we created a synthetic dataset of 500 samples to use as

inputs to the BN learning algorithm. We can see from the

model that ‘Process1’, ‘Process2’, and ‘Process3’ occur in

that sequential order. Assume that all the variables measured

for a process are independent of each other. Therefore, from

the model, we can deduce that ‘D1’,’D2’ must be the root

nodes in the Bayesian network. The variables ‘C1’, ’C2’, and

’D3’ will be in the second layer of the BN and each of them

could have ‘D1’, ’D2’, or both as parent nodes. Similarly,

‘C3’, ’D4’, and ‘C4’ will be in the third layer and each of

them can be expressed using a subset of the variables

associated with Process2 as parent nodes. Adding such

qualitative information makes the learning process faster and

more accurate. The statistical results are given in Table IX.

 The topology of the learnt BN matches that of the true BN;

this can be observed by comparing the parent nodes of each

child node from the true and learnt CPDs (Tables VIII and

IX), although there are minor differences in the conditional

probability distributions. The differences can be attributed to

the assumptions made in the learning process (linear

Gaussian CPD) and to the amount of data available for BN

learning. As the amount of data increases, the accuracy of the

conditional probability distributions can be improved. As

stated in Section III.B.2, two model interpreters are created

to perform automated UQ analysis. Using the first interpreter,

a GME instance model of the constructed BN is created

(Figure 5). In the instance model, observations are added for

nodes ‘D4’,’C1’, and ‘C4’. Using the observation data, the

posterior distributions of root nodes‘D1’ and’D2’ are

obtained. The statistics of the prior and posterior distributions

are provided in Table X.

1414

TABLE X. MATHEMATICAL EXAMPLE: PRIOR AND POSTERIOR

PROBABILITIES OF CALIBRATION PARAMETERS

Variable True

value

Prior

probability

Posterior

probability

D1 0 0.3,0.7 1,0

D2 1 0.6,0.3,0.1 0.38,0.62,0

Figure 5. Mathematical example: BN instance model

2) UQ analysis using physics-based models

 An injection molding process is used to demonstrate

automated BN construction and UQ analysis using physics-

based models. The injection molding process can be

considered as a combination of three sub-processes: melting

of the polymer, injection into the mold, and cooling to form

the part. Each sub-process is associated with a set of

parameters (input variables as well as model parameters). The

goal is to estimate the energy consumption per part in the

injection molding process. Physics-based models are

assumed to be available for energy consumption (Equations

5 to 11).

𝑉𝑠ℎ𝑜𝑡 = 𝑉𝑝𝑎𝑟𝑡(1 + 𝜖 + Δ) (5)

𝑃𝑚𝑒𝑙𝑡 = 𝜌 × 𝑄𝑎𝑣𝑔 × 𝐶𝑝 × (𝑇𝑖𝑛𝑗 − 𝑇𝑝𝑜𝑙) + 𝜌

× 𝑄𝑎𝑣𝑔 × 𝐻𝑓
(6)

𝐸𝑚𝑒𝑙𝑡 =
𝑃𝑚𝑒𝑙𝑡 × 𝑉𝑠ℎ𝑜𝑡

2 × 𝑄𝑎𝑣𝑔

 (7)

𝐸𝑖𝑛𝑗 = 𝑃𝑖𝑛𝑗 × 𝑉𝑝𝑎𝑟𝑡 (8)

𝐸𝑐𝑜𝑜𝑙 =
𝜌 × 𝑉𝑝𝑎𝑟𝑡 × [𝐶𝑝 × (𝑇𝑖𝑛𝑗 − 𝑇𝑒𝑗)]

𝐶𝑂𝑃
 (9)

𝐸𝑟𝑒𝑠𝑒𝑡 = 0.25(𝐸𝑖𝑛𝑗 + 𝐸𝑐𝑜𝑜𝑙 + 𝐸𝑚𝑒𝑙𝑡) (10)

𝐸𝑝𝑎𝑟𝑡 = [(
0.75 × 𝐸𝑚𝑒𝑙𝑡 + 𝐸𝑖𝑛𝑗

𝜂𝑖𝑛𝑗

+
𝐸𝑟𝑒𝑠𝑒𝑡

𝜂𝑟𝑒𝑠𝑒𝑡

+
𝐸𝑐𝑜𝑜𝑙

𝜂𝑐𝑜𝑜𝑙

+
0.25 × 𝐸𝑚𝑒𝑙𝑡

𝜂ℎ𝑒𝑎𝑡𝑒𝑟

) ×
(1 + 𝜖 + Δ)

𝜂𝑚𝑎𝑐ℎ𝑖𝑛𝑒

+ 𝑃𝑏 × 𝑡𝑐𝑦𝑐𝑙𝑒]

(11)

In the above set of equations, 𝑉𝑠ℎ𝑜𝑡 , 𝑉𝑝𝑎𝑟𝑡 , 𝜖, Δ represent the

volume of a shot, volume of a part, shrinkage and buffer

respectively. 𝑃𝑚𝑒𝑙𝑡 , 𝜌, 𝑄𝑎𝑣𝑔 , 𝐶𝑝, 𝑇𝑖𝑛𝑗 , 𝑇𝑝𝑜𝑙 , 𝑇𝑒𝑗 , 𝐻𝑓 represent

the power consumption for melting, density of polymer,

average flow rate, heat capacity, injection temperature,

polymer temperature, ejection temperature, heat of fusion

respectively. 𝐸𝑚𝑒𝑙𝑡 , 𝐸𝑖𝑛𝑗 , 𝐸𝑐𝑜𝑜𝑙 , 𝐸𝑝𝑎𝑟𝑡 represent energy

consumption for melting, injection, cooling and total energy

for a part respectively. More details are available in [21].

 A BN instance model (Figure 6) is created by executing

the interpreter for BN construction, as stated in Section III.

For illustration, all the efficiency coefficients (𝜂, 𝐶𝑂𝑃) are

assumed to be 0.7 and 𝑃𝑏 , which is the power consumed by

the basic units, is assumed to be zero. The statistics of

variables are provided in Table XI.

TABLE XI. INJECTION MOLDING: VARIABLES AND THEIR VALUES

Parameter Values Parameter Values

𝑉𝑝𝑎𝑟𝑡(𝑚3) 0.002048 𝐻𝑓(𝑘𝐽/𝑘𝑔) 240

𝜖 0.0185 𝜌(𝑘𝑔/𝑚3) 𝑈(960,990)

Δ 0.01 𝑇𝑖𝑛𝑗(𝑜𝐶) 215

𝑇𝑒𝑗 (𝑜𝐶) 𝑈(45,60) 𝐶𝑝(𝐽/(𝑘𝑔𝐾)) 2260

𝑇𝑝𝑜𝑙 (
𝑜𝐶) 49 𝑃𝑖𝑛𝑗(𝑀𝑃𝑎) 93

All the parameters with constant values can be removed from

the BN instance model. Observation data is assumed to be

available on the total energy consumption (𝐸𝑝𝑎𝑟𝑡) , and

ejection temperature (𝑇𝑒𝑗). The parameters to be calibrated

are the density of the polymer (true value = 985), and ejection

temperature (true value = 55). The prior distributions

associated with the calibration parameters are given in Table

XI. The measurement errors associated with temperature

measurements and energy are assumed to be normal

distributions with zero mean and standard deviations of 2𝑜𝐶

and 100 kJ respectively. A normal distribution is typically

assumed for measurement errors because it is symmetric

about zero; therefore positive and negative errors are equally

probable and small errors are more likely to occur than large

errors in a controlled experiment [22]. The modified BN

instance model (BN instance model after removing all

constants) is then used to carry out UQ analysis. The UQ

analysis can be carried out by executing the second model

interpreter. The prior and posterior distributions of the

calibration parameters are provided in Figure 7.

V. CONCLUSION

 This paper proposed a methodology for automated

Bayesian network construction and uncertainty

quantification analysis. The BN is constructed by fusing the

information from available system models, physics-based

models, and collected data. The system model is assumed to

be available as a domain-specific model in the GME

platform. Physics-based models are assumed to be available

as equations in a text format.

1415

A meta-model for the BN is developed along with a

syntactic representation of the conditional probability

distribution/tables in GME. The meta-model is created such

that the BN can have discrete, continuous, and functional

nodes. On the meta-model, two model interpreters (also

called model translators) are written to construct the BN and

to perform uncertainty quantification analysis. An algorithm

is presented to generate the BN from a set of physics-based

models. In the absence of physics-based models, the BN is

constructed using BN learning algorithms.

The constructed BN is represented as an instance model of

the BN meta-model. The instance model can be modified to

include any further information about the BN such as

observation data and post-processing information. Using the

instance model, the second program constructs a Bayesian

network for UQ analysis using PyMC package in Python.

The proposed method is illustrated using two examples – an

injection molding process and a mathematical example.

 Automated UQ analysis using physics-based models is

demonstrated for injection molding and a mathematical

example is used to demonstrate UQ analysis using data. The

injection molding example consists of only functional nodes

and continuous nodes, whereas the mathematical example is

created such that it has all combinations of discrete and

continuous variables.

 The goal of this work is to assist manufacturers in

performing uncertainty analysis using automated tools,

without requiring expertise in UQ methods and UQ-specific

tools. This will help manufacturers make better use of their

data analytics capabilities by allowing them to give proper

consideration to uncertainty.

 Future work is needed to develop algorithms for

automation of analysis such as sensitivity analysis,

verification and validation. Also, algorithms for the

construction of dynamic Bayesian networks (for tracking

system evolution over time), and diagnostic and prognostic

analysis need to be investigated.

ACKNOWLEDGMENT

 The research reported in this paper was funded in part by

the National Institute of Standards and Technology under

Cooperative Agreements No. 70NANB14H036 and No.

70NANB13H159, and NIST’s Foreign Guest Researcher

Program.

REFERENCES

[1] H.R.Bae, R.V. Grandhi, and R.A.Canfield, “Epistemic
uncertainty quantification techniques including evidence
theory for large-scale structures.” Computers & Structures,
82(13), 1101-1112. 2004.

[2] F.V.Jensen, “An Introduction to Bayesian Networks>”
Springer-Verlag, 1996.

[3] G.Dahll, “Combining disparate sources of information in the
safety assessment of software-based systems,” Nuclear
Engineering and Design. 2000; 195: 307-319.

[4] L.M. de Campos, J.M. Fernández-Luna and J. F. Huete,
"Bayesian networks and information retrieval: an introduction

to the special issue.” Information Processing & Management
(Elsevier) 40 (5): 727–733, 2004.

[5] N.Friedman, M. Linial, I. Nachman, D. Pe'er, "Using Bayesian
Networks to Analyze Expression Data.” Journal of
Computational Biology, (3/4): 601–620, 2004.

[6] X.Jiang, R.E.Neapolitan, M.M.Barmada, and S.Visweswaran,
“Learning Genetic Epitasis using Bayesian Network Scoring
Criteria,” BMC Bioinformatics 12: 89, 2011.

[7] M.Bensi, and A. Der Kiureghian, “Seismic hazard modeling by
Bayesian network and application to a high-speed rail system,”
Proceedings of International Symposium on Reliability
Engineering and Risk Management, (Ed: J. Li), Tongji
University Press, Shanghai, China, September 2010.

[8] S.Nannapaneni and S.Mahadevan, “Uncertainty Quantification
in Performance Evaluation of Manufacturing Processes,” IEEE
International Conference on BigData (Big Data), IEEE, 2014.

[9] S.Sankararaman, Y.Ling and S.Mahadevan, “Uncertainty
quantification and model validation of fatigue crack growth
prediction,” Engineering Fracture Mechanics, 78(7), 1487-
1504, 2011.

[10] B.Liang and S.Mahadevan, “Error and uncertainty
quantification and sensitivity analysis in mechanics
computational models,” International Journal for Uncertainty
Quantification, 1(2), 2011.

[11] A. Lédeczi, A. Bakay, M. Maroti, P. Völgyesi, G. Nordstrom,
J. Sprinkle, and G. Karsai. "Composing domain-specific design
environments." Computer 34, no. 11: 44-51, 2001.

[12] D.Lechevalier, A.Narayanan, and S.Rachuri. "Towards a
domain-specific framework for predictive analytics in
manufacturing." IEEE International Conference on Big Data
(Big Data), IEEE, 2014.

[13] M.Scutari, “Bayesian Network Constraint-Based Structure
Learning Algorithms: Parallel and Optimised Implementations
in the bnlearn R Package,” Journal of Statistical Software, June
2014.

[14] The Unified Modeling Language.
http://www.omg.org/spec/UML/2.5/ (Accessed 9/2015)

[15] S.Nannapaneni, A.Dubey, S.Abdelwahed, S.Mahadevan and
S.Neema, “A Model-Based Approach for Reliability
Assessment in Component-Based Systems,” Proceedings of
the Annual Conference of the Prognostics and Health
Management Society, 2014

[16] I.M. del Aguila, and J. del Sagrado. "Metamodeling of
Bayesian networks for decision-support systems
development." Knowledge Engineering and Software
Engineering (KESE8): 8, August 2012.

[17] B.Wilczyński and N.Dojer, “BNFinder: exact and efficient
method for learning Bayesian networks.” Bioinformatics,
25(2), 286-287, 2009.

[18] Y.Ling and S.Mahadevan, “Quantitative model validation
techniques: New insights”, Reliability Engineering & Systems
Safety, 111, 217-231, 2013

[19] A.Patil, D.Huard, and C.J.Fonnesbeck. "PyMC: Bayesian
stochastic modelling in Python." Journal of statistical
software 35.4 2010: 1.

[20] S.Chib, and E.Greenberg, “Understanding the metropolis-
hastings algorithm.” The american statistician, 1995, 49(4),
327-335.

[21] J.Madan, M.Mani, and K.W.Lyons,”Characterizing energy
consumption of the injection molding process,” Proceedings in
ASME 2013 International Manufacturing Science and
Engineering Conference collocated with the 41st North
American Manufacturing Research Conference (pp.
V002T04A015-V002T04A015), 2013.

[22] N.C.Barford, “Experimental measurements: precision, error
and truth.” Chichester: Wiley, 1985, 2nd ed.

1416

TABLE VIII. MATHEMATICAL EXAMPLE: CPD/CPT OF VARIABLES USED FOR SYNTHETIC DATASET GENERATION

Variable CPT/CPD

D1 0.3,0.7

D2 0.6,0.3,0.1

C1 | D1 Normal(10 + 4*D1,2)

C2 | D2 Normal(6+2*D22,1)

C4| C2 Normal(0.1*C22 + 0.6*C2 + 1, 2)

C3 | C2, D3 D3 = 0, Normal(0.15*C22,2) D3 = 1, Normal(2*C2,1)

D3|D1,D2
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)

0,1,0.9 0.3,0.7 0.4,0.6 0.6,0.4 0.8,0.2 0.9,0.1

D4|D3,C2
(0, C2<9) (0,9<C2<11) (0, C2>11) (1, C2<9) (1,9<C2<11) (1, C2>11)

0.4,0.6 0.3,0.7 0.6,0.4 0.7,0.3 0.8,0.2 0.3,0.7

TABLE IX. MATHEMATICAL EXAMPLE: CPD/CPT OF VARIABLES IN THE LEARNT BN

Variable CPT/CPD

D1 0.32,0.68

D2 0.6,0.31,0.09

C1 | D1 D1=0, Normal(9.68,1.87) D1=1, Normal(14.04,1.93)

C2 | D2 D2=0, Normal(6.03,1) D2=1, Normal(7.97,1) D2=2, Normal(14,0.84)

C4| C2 Normal(2.46*C2 -6.63,2.28)

C3 | C2, D3 D3 = 0, Normal(5.83*C2-25.2,9.58) D3 = 1, Normal(2*C2+0.12,1.37)

D3|D1,D2
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)

0.09,0.91 0.33,0.67 0.25,0.75 0.56,0.44 0.79,0.21 0.88,0.12

D4|D3,C2
(0, C2<10.3) (0, C2>10.3) (1, C2<10.3) (1, C2>10.3)

0.35,0.65 0.67,0.33 0.72,0.28 0.31,0.69

Figure 6. Injection molding example: BN instance model using physics-based models

1417

(a) (b)

Figure 7. Injection molding example: Prior and posterior distributions of (a) Density and (b) Ejection temperature

